Accept our email invitation and get $10 towards your first purchase of Methyl-Life.

Methyl-Life was created to give you the comfort of a greatly improved quality of life. And we want to help you get started on that path to feeling healthier.

When you sign up, you'll receive additional promotional deals, discounts, and valuable information about living with MTHFR.

MTHFR and Histamine Levels

MTHFR and Histamine Levels: What's the Link | Methyl-Life®

MTHFR and Histamine Levels

Histamine is linked to allergic symptoms such as hay fever and skin rashes. While these reactions are often linked to food and environmental sensitivities, recent research suggested that histamine levels may also be influenced by the MTHFR mutation. 

Histamine is a biologically active molecule known as an amine. It’s formed when the carboxyl group is removed from the amino acid histidine, a process known as decarboxylation.

The highest concentrations of histamine are in the gut lining, the skin, and the respiratory tract. Basophils and mast cells within these tissues secrete histamine when the body detects a pathogen or foreign substance, which becomes part of the immune response.  

Mast cells are the major producer of histamine and express many receptors on their surface. These receptors are activated through stimulants such as allergens, complement peptides, and neuropeptides, which cause the mast cells to release various inflammatory mediators, including histamine.

MTHFR is an enzyme required for numerous methylation processes in the body, including the conversion of folate to methyl-folate, DNA function, the repair of damaged cells, neurotransmitter production, the metabolism of B vitamins, and many others.  Methylation is also required for the proper functioning of the Histamine-N-Methyl-Transferase (HNMT) enzyme, which is critical for the processing of histamine. 

Impaired methylation caused by mutations on the MTHFR gene can lead to a variety of health issues, including elevated homocysteine, histamine intolerance, allergies and intolerances, hormonal imbalances, and more. 

This article will explain the role of the MTHFR gene in histamine production and regulation and why a mutation may result in elevated histamine levels. We will also explain how different MTHFR variants can affect histamine levels and how someone with an MTHFR mutation can support their body’s methylation function through supplements. 

The MTHFR Gene's Role in Histamine Production and Regulation

One of the most important functions of the MTHFR gene is the conversion of homocysteine to methionine. Methionine is involved in detoxification, cell repair, the building of proteins, and healthy inflammatory response. It’s also necessary for producing glutathione, the body’s most important detoxification substance.

Methionine is broken down in the liver to create SAMe, a compound that helps produce and regulate hormones and maintain cell membranes. SAMe is also required to break down neurotransmitters and repair cellular damage.

SAMe is also an important cofactor of HNMT, the enzyme that processes and regulates histamine in the body. It also plays a key role in histamine detoxification. The HNMT enzyme works to add a methyl group to histamine so that the methylated histamine molecules can then be flushed out of the body in urine. 

In short, the MTHFR helps regulate methylation,  which is essential to reduce intracellular histamine. This process requires vitamin B2 as a cofactor.

Why is Methylation Important

Why is Methylation Important?

Methylation underpins many essential daily functions, from regulating cognitive function and supporting energy levels to detoxifying harmful substances from the body and supporting growth and repair. 

Methylation occurs as a result of two important cycles - the folate cycle and the methionine cycle. Both of these are required to produce 5-MTHF and S-adenosyl methionine (SAMe), the body’s main methyl donor. SAMe is used in numerous bodily systems as it is required to donate a methyl group to various methyltransferase enzymes.

Methylation of neurotransmitters and hormones, such as dopamine, histamine, melatonin, and estrogen is necessary to facilitate their excretion.

The proper functioning of HNMT detoxifies histamine from the body, and this also depends on methylation. If methylation is impaired, the proper functioning of either HNMT or Catechol-O-Methyltransferase (COMT) is affected, and the body is less efficient at removing toxins. This can lead to a significant build-up of histamine. At the same time, impaired function of the Diamine Oxidase (DAO) and Monoamine Oxidase (MAO) genes may impair detoxification further.

Methylation is also essential for the proper functioning of the COMT enzyme, which underpins the processing of estrogen in the liver

Immune function is also dependent on methylation due to its role in regulating immune cell differentiation and maturation, antigen recognition, and the body’s immune response to antigens. 

Methylation is also involved in the production of phosphatidylcholine, which makes bile acids. Bile acids regulate the pH of the small intestine and help to digest certain food molecules. When insufficient, the pH of the small intestine rises, which is a major cause of small intestinal bacterial overgrowth (SIBO). Histamine intolerance is linked to a deficiency of the enzyme DAO and, therefore, the poor processing of histamine within the GI tract.

How an MTHFR Gene Mutation Can Affect Histamine Levels

Although histamine levels are usually kept under control by rapid enzymatic detoxification, genetic variants such as MTHFR may increase histamine production or slow down its breakdown in the body. This can create a vicious cycle of high histamine, inflammation, and allergic symptoms. 

Because SAMe relies on the proper function of the MTHFR enzyme, an MTHFR genetic mutation can impair the function of HMNT. The breakdown of histamine will be compromised, possibly leading to higher histamine levels and symptoms associated with histamine intolerance, such as skin conditions, digestive troubles, headaches, migraines, fatigue, and an irregular menstrual cycle.

Histamine is a key player in the allergic inflammatory cascade, and those with allergies tend to have a higher baseline histamine level, prolonging inflammatory signaling.

Impaired estrogen detoxification due to poor methylation can result in the accumulation of estrogen, which in turn stimulates mast cells to release histamine.

Disruption of the HMNT gene has been shown to result in a significant increase in brain histamine concentration, demonstrating the essential role of HNMT in the brain’s detoxification system. Clinical studies have also suggested that single nucleotide polymorphisms of the human HNMT gene are associated with several brain disorders such as Parkinson’s disease and attention deficit hyperactivity disorder.

What About MTHFR Variants?

Abnormal variations of MTHFR can also be inherited as heterozygous (one variant) or homozygous (two variations). 

Homozygous (two copies) of the MTHFR 677TT  leads to significantly reduced MTHFR enzyme function. At the same time, one copy of C677T and one of A1298C can also result in a significant reduction in MTHFR enzyme activity (up to 60%). Both variants lead to significantly lower levels of 5-MTHF, potentially impairing methylation further. 

The A1298C polymorphism is generally thought to be less detrimental though studies on this form of MTHFR are ongoing.


The processing of histamine in the body depends on the HNMT gene, which in turn depends on SAMe as a cofactor. However, SAMe can only do its job if the MTHFR enzyme is also functioning efficiently - which will not be the case in the presence of an MTHFR genetic mutation. 

Depending on the variant of the MTHFR mutation, MTHFR enzyme activity will be reduced, disrupting the ability of HNMT to process histamine. This can lead to poor detoxification and, subsequently, higher levels of histamine - which comes with a range of health issues.

Managing histamine intolerance and reducing symptoms should begin with following a low-histamine diet. Studies have shown that reducing intake of histamine also reduces symptoms of intolerance and may even help to increase DAO levels in the blood. 

Methylation is critical for the proper function of genes involved with processing histamine and its detoxification. Proper methylation relies on specific nutrients, including the bioactive form of folate, 5-methyltetrahydrofolate (5-MTHF). 

Fortunately, this can be supported by supplementing the body with the nutrients it requires to carry out this process, namely methylated folate. 

Some of the best methylfolate supplements for those with histamine-related conditions due to MTHFR mutations include Methyl-Life® products (B-Methylated II, Methylated Multivitamin, Methylfolate 7.5+ or Methylfolate 15+.) This product range has been created by a team of natural health experts and used successfully by hundreds of people all over the world. The forms of L-Methylfolate used in Methyl-Life® products are among the purest, most stable, and most potent of four of the world’s industry-leading patented L-Methylfolates. 

Methyl Life Supplements

Share This Article

How does L-Methylfolate affect immune response with Covid-19
What's the relationship between depression & L-Methylfolate
What is the best form of active B12 to take
Best Form Of B12 Vitamins
    Written By,
    - Katie Stone



Sold Out